Lecture 11: Decision Trees

Introduction to Learning

and Analysis of Big Data
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Decision Trees

Decision trees are a natural model of decision-making.
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A decision tree is a predictor h : X ! Y that is de ned by traveling from a root of a tree to a leaf.
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Decision trees

[image: image66.png]


 Tree inner nodes match attributes (or tests) on X .

[image: image2] Common test type: I[x(i)
] for some threshold
.

[image: image3] Each inner node has children for each possible result of the test

[image: image4] Tree leaves match a predicted label. [image: image5] Same label can repeat in several leaves!

· Illustration: Should a person be admitted to hospital?
· Use attributes such as blood pressure, fever, heart-rate.
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A hypothesis class for decision trees

[image: image6] Assume for simplicity X = f0; 1gd , Y = f0; 1g.

[image: image7] Goal: Learn a decision tree with inner nodes of the form \x(i) = 1?".

[image: image8] Can we learn using the hypothesis class of all possible decision trees?

[image: image9] Problem: This allows all functions f : X ! Y. We will get over tting.

[image: image10] Solution: Regularize by restricting the size of the tree.

[image: image11] Hn := decision tree with at most n internal nodes and leaves. [image: image12] What is the size of Hn?

· For each node, select feature i to test, or mark it as a leaf with 0 or 1 (some options are not legal, this is an upper bound)
· Each node has   d + 2 options.
· jHnj  (d + 2)n.
· Sample complexity is O(log(jHnj)   O(n log d).
[image: image13] Bias-complexity trade-o :

· Larger n: Smaller approximation error, larger estimation error
· Smaller n: Larger approximation error, smaller estimation error.
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Learning a decision tree

[image: image14] Would like to do ERM on Hn for the best possible n.

[image: image15] ERM on decision trees in NP-hard [image: image16] .

[image: image17] Also, we don’t know what n should be [image: image18] .

[image: image19] Solution: Use a heuristic to
nd a good tree for S.

[image: image20] If:

· Found a tree h with low err(h; S), and
· Sample size is large enough for the size of the tree,
[image: image21] Then: err(h; D) will be low (since it will be similar to err(h; S)).
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A greedy heuristic: ID3

[image: image22] ID3: Learn a decision tree greedily, starting from the root.

[image: image23] Gain(S; i): a function that estimates the improvement of the tree error on S if a split using attribute i is used.

[image: image24] In each iteration decide which attribute to use based on Gain(S; i).

[image: image25] Stop when tree cannot be improved by adding splits.

[image: image26] The algorithm is recursive.


ID3 algorithm


input Training sample S, feature subset A
f1; : : : ; dg.

output A tree for S using only attributes in A.

1: if all of S is labeled y 2 f0; 1g, return a leaf labeled y .
2: if A = ;, return a leaf labeled with the majority label on S.
3: Let j = argmaxi2A Gain(S; i).
4: For a 2 f0; 1g, let Sa = f(x; y ) 2 S j x(j) = ag.
5: Return a tree with root j, left child ID3(S0; A n fjg), and right child ID3(S1; A n fjg).
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A greedy heuristic: ID3

ID3: Learn a decision tree greedily, starting from the root.


Gain(S; i): a function that estimates the improvement of the tree.


Options for Gain function:


· Improvement in sample error after split.
· De ne C (a) := minfa; 1   ag. Denote: PS is the \probabiility" on S.
· Sample error without the split:
errbefore := C (PS [y = 1]):

· Sample error with the split:
errafter :=PS [X (i) = 1]C (PS [Y = 1 j X (i) = 1])+

PS [X (i) = 0]C (PS [Y = 1 j X (i) = 0]):

F De ne Gain(S; i) := errbefore(S)
errafter(S; i).

· Information Gain: Same as above, except
C (a) := a log(a) (1 a) log(1 a): (entropy). Used by popular algorithms such as ID3 and C4.5.

I
Gini Index: Same as above, except C (a) := 2a(1 a). Used by popular CART algorithm.
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A greedy heuristic: ID3

[image: image27] Which gain function is the best?

[image: image28] Problem is NP-hard | no gain function guarantees optimal (smallest) tree.

[image: image29] Can prove some guarantees for Information gain and Gini index.

[image: image30] Information gain and Gini index are used more in practice.
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Avoiding Over tting

[image: image31] ID3 tries to
nd a tree with a small sample error

[image: image32] This tree can be very large =) danger of over tting.

[image: image33] Solution: restrict size of tree.

· Can decide on tree size in advance, or
· Can learn the whole tree, then prune
[image: image34] Pruning: Remove sub-trees if it doesn’t hurt the sample error too much.

[image: image35] Idea: If tree is smaller but sample error remains the same, error on distribution should be improved (less over tting).

Kontorovich and Sabato  (BGU)
Lecture 11
9 / 13


Pruning

[image: image36] Assume some function f (T ), which estimates the true error of the decision tree T on the distribution.

· f can be based on PAC analysis and the size of the tree
· f can be estimated using a validation sample
[image: image37] Start with a tree T .

[image: image38] For each node j in the tree (starting from the bottom), check the following options:

· Do nothing
· Replace node j
· Replace node j
· Replace node j
· Replace node j


with leaf with label 0

with leaf with label 1

with left sub-tree

with right sub-tree

[image: image39] In each node, choose the option that gives the smallest value of f .

[image: image40] Return the new tree T 0 .

Kontorovich and Sabato  (BGU)
Lecture 11
10 / 13


Real-valued features

[image: image41] When examples have real valued features, there are many possible test for each feature.

[image: image42] Considering only threshold tests: For feature i and threshold
, can

use the test: I[x(i)
]

[image: image43] For sample S of size m, for each feature i there are at most m + 1 thresholds that induce di erent splits. Denote them 1;i ; : : : ; m+1;i .

[image: image44] De ne a new binary feature for each i d; j m + 1: For example x, value of feature is I[x(i) j;i ].

[image: image45] Run ID3 on the (m + 1)d binary features.

[image: image46] There are more e cient implementations, because the binary features have a special structure.
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Random Forests

[image: image47] Another approach that reduces over tting: Random Forests.

[image: image48] A random forest is a classi er consisting of several decision trees.

[image: image49] The prediction of the random forest is the majority vote of predictions of each tree in the forest.

[image: image50] Assume a decision tree learning algorithm that accepts a vector of parameters .

[image: image51] A popular choice: de nes which features are allowed to be used in each level of the tree.

[image: image52] Each tree in the forest is learned as follows:

· Select some random vector  based on some distribution.
· Learn a decision tree on S using the algorithm with input  .
[image: image53] This process generates many di erent trees.

[image: image54] Idea: the collection of trees is more robust than any one tree.

[image: image55] Random forests are very successful on many practical problems.

[image: image56] Their success depends on many
ne details that we did not cover.
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Summary

[image: image57] Decision trees are a popular model used for learning

[image: image58] The hypothesis class of all decision trees is too large.

[image: image59] Learning the optimal decision trees is NP-hard.

[image: image60] In practice

· Use a greedy algorithm for growing the decision tree,
· Prune the decision tree after learning it.
· Or, use a random forest: a collection of di erent trees.
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