Lecture outline

· Decision-tree classification

Decision Trees

· Decision tree

–  A flow-chart-like tree structure

–  Internal node denotes a test on an attribute

–  Branch represents an outcome of the test

–  Leaf nodes represent class labels or class distribution

· Decision tree generation consists of two phases

–  Tree construction

· At start, all the training examples are at the root

· Partition examples recursively based on selected attributes

–  Tree pruning

· Identify and remove branches that reflect noise or outliers

· Use of decision tree: Classifying an unknown sample

–  Test the attribute values of the sample against the decision tree

Training
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Output: A Decision Tree for

age?
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Constructing decision trees

· Exponentially many decision trees can be constructed from a given set of attributes

· Finding the most accurate tree is NP-hard

· In practice: greedy algorithms
· Grow a decision tree by making a series of locally optimum decisions on which attributes to use for partitioning the data

Constructing decision trees:

the Hunt’s algorithm

· Xt: the set of training records for node t
· y={y1,…,yc}: class labels
· Step 1: If all records in Xt belong to the same class yt, then t is a leaf node labeled as yt
· Step 2: If Xt contains records that belong to more than one class,
– select attribute test condition to partition the records into smaller subsets

– Create a child node for each outcome of test condition

– Apply algorithm recursively for each child

Decision-tree construction (Example)
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Figure 4.6. Training set for predicting borrowers who will default on loan payments.
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Design issues

· How should the training records be split?

· How should the splitting procedure stop?

Splitting methods

· Binary attributes
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Figure 4.8. Test condtion for binary attributes.




Splitting methods

· Nominal attributes
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Figure 4.9. Test conditions for nominal atiributes.




Splitting methods

· Ordinal attributes
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Figure 4.10. Different ways of grouping ordinal attribute values.




Splitting methods

· Continuous attributes
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Figure 4.11. Test condition for continuous attributes.




Selecting the best split

· p(i|t): fraction of records belonging to class i
· Best split is selected based on the degree of impurity of the child nodes
– Class distribution (0,1) has high purity

– Class distribution (0.5,0.5) has the smallest purity (highest impurity)

•
Intuition: high purity  small value of impurity measures  better split

Selecting the best split
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Selecting the best split:

Impurity measures

· p(i|t): fraction of records associated with node t belonging to class i
	
	c

	Entropy(t) = −
	cX

	
	p(i|t) log p(i|t)

	
	i=1

	Xi

	Gini(t) = 1 −
	[p(i|t)]2


=1

Classification-Error(t) = 1 − max[p(i|t)]

i

Range of impurity measures
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Figure 4.13. Comparison among the impurity measures for binary classification problems.




Impurity measures

· In general the different impurity measures are consistent
· Gain of a test condition: compare the impurity

of the parent node with the impurity of the child

	nodes
	k  N(vj )
	

	= I(parent) −
	
	
	I(vj )

	
	=1
	N
	

	
	Xj
	


· Maximizing the gain == minimizing the weighted average impurity measure of children nodes

•
If I() = Entropy(), then info is called information gain

Computing gain: example
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Figure 4.14. Spliting binary afributes.





Is minimizing impurity/ maximizing enough?

[image: image19.jpg](et (e ( Customer)

D/

Gender (
N

Family Luxury

Male Female

C0:6(|C0:4 Co:1
C1:4||Cl:6 C1:3

(a) (b)
Figure 4.12. Multiway versus binary splits.




Is minimizing impurity/ maximizing enough?

· Impurity measures favor attributes with large number of values

· A test condition with large number of outcomes may not be desirable

– # of records in each partition is too small to make predictions

Gain ratio

• Gain ratio =
info/Splitinfo

· SplitInfo = -Σi=1…kp(vi)log(p(vi))
· k: total number of splits
· If each attribute has the same number of records, SplitInfo = logk
•
Large number of splits  large SplitInfo  small gain ratio

Constructing decision-trees (pseudocode)

GenDecTree(Sample S, Features F)

1. If stopping_condition(S,F) = true then

a. leaf = createNode()
b. leaf.label= Classify(S)
c. return leaf

2. root = createNode()
3. root.test_condition = findBestSplit(S,F)
4. V = {v| v a possible outcome of root.test_condition}
5. for each value vєV:
a. Sv: = {s | root.test_condition(s) = v and s є S};
b. child = TreeGrowth(Sv ,F) ;
c. Add child as a descent of root and label the edge (rootchild) as v
Stopping criteria for tree induction

· Stop expanding a node when all the records belong to the same class

· Stop expanding a node when all the records have similar attribute values

· Early termination

Advantages of decision trees

· Inexpensive to construct

· Extremely fast at classifying unknown records

· Easy to interpret for small-sized trees

· Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5 algorithm

· Simple depth-first construction.

· Uses Information Gain

· Sorts Continuous Attributes at each node.

· Needs entire data to fit in memory.

· Unsuitable for Large Datasets.

· You can download the software from:

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
Practical problems with classification

· Underfitting and overfitting

· Missing values

· Cost of classification

Overfitting and underfitting
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Underfitting: when model is too simple, both training and test errors are large

Overfitting due to noise
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Decision boundary is distorted by noise point

Underfitting due to insufficient samples
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Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

· Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Overfitting: course of action

· Overfitting results lead to decision trees that are more complex than necessary

· Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

· Need new ways for estimating errors

Methods for estimating the error

· Re-substitution errors: error on training (Σ e(t) )
· Generalization errors: error on testing (Σ e’(t))
· Methods for estimating generalization errors:

– Optimistic approach: e’(t) = e(t)

– Pessimistic approach:

· For each leaf node: e’(t) = (e(t)+0.5)
· Total errors: e’(T) = e(T) + N × 0.5 (N: number of leaf nodes)

· For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%

Generalization error = (10 + 30×0.5)/1000 = 2.5%

– Reduced error pruning (REP):

· uses validation data set to estimate generalization error

Addressing overfitting:

Occam’s razor

· Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

· For complex models, there is a greater chance that it was fitted accidentally by errors in data

· Therefore, one should include model complexity when evaluating a model

Addressing overfitting:

postprunning

– Grow decision tree to its entirety

– Trim the nodes of the decision tree in a bottom-up fashion

– If generalization error improves after trimming, replace sub-tree by a leaf node.

– Class label of leaf node is determined from majority class of instances in the sub-tree

– Can use MDL for post-pruning

Addressing overfitting:

preprunning

· Stop the algorithm before it becomes a fully-grown tree

· Typical stopping conditions for a node:

· Stop if all instances belong to the same class

· Stop if all the attribute values are the same

· More restrictive conditions:

· Stop if number of instances is less than some user-

specified threshold

· Stop if expanding the current node does not improve impurity

measures (e.g., Gini or information gain).

Decision boundary for decision trees

· Border line between two neighboring regions of different classes is known as decision boundary
· Decision boundary in decision trees is parallel to axes because test condition involves a single attribute at-a-time

Oblique Decision Trees
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• Test condition may involve multiple attributes

• MoreNotexpressivealldatasetsrepresentationcan be partitioned optimally

• Finding optimal test condition is computationally expensive

using test conditions involving single attributes!

Oblique Decision Trees
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