Lecture outline

· Decision-tree classification

Decision Trees

· Decision tree

– A flow-chart-like tree structure

– Internal node denotes a test on an attribute

– Branch represents an outcome of the test

– Leaf nodes represent class labels or class distribution

· Decision tree generation consists of two phases

– Tree construction

· At start, all the training examples are at the root

· Partition examples recursively based on selected attributes

– Tree pruning

· Identify and remove branches that reflect noise or outliers

· Use of decision tree: Classifying an unknown sample

– Test the attribute values of the sample against the decision tree

Training

[image: image1.png]buys_computer

<=30 |high | no |far | no |

fair | yes |
>40 |medium| no [far | @ yes |
>40 llow | yes [far |

| yes |
-l-_
31..40 [low | yes lexcellent | yes |
<=30 |medium| no [far | = no |
<=30 llow | ves |far | = yes |
l--
31...40 |medium | no |excellent | yes |
31...40 [high | ves [far | = yes |
-

Output: A Decision Tree for

age?

[image: image2.png]

<=30
30..40
>40

	student?
	yes
	credit rating?

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

no
yes
excellent
fair

[image: image7.png]

[image: image8.png]

[image: image9.png]

[image: image10.png]

no
yes
no
yes

Constructing decision trees

· Exponentially many decision trees can be constructed from a given set of attributes

· Finding the most accurate tree is NP-hard

· In practice: greedy algorithms
· Grow a decision tree by making a series of locally optimum decisions on which attributes to use for partitioning the data

Constructing decision trees:

the Hunt’s algorithm

· Xt: the set of training records for node t
· y={y1,…,yc}: class labels
· Step 1: If all records in Xt belong to the same class yt, then t is a leaf node labeled as yt
· Step 2: If Xt contains records that belong to more than one class,
– select attribute test condition to partition the records into smaller subsets

– Create a child node for each outcome of test condition

– Apply algorithm recursively for each child

Decision-tree construction (Example)

[image: image11.png]Home Marital Annual Defaulted

Tid
Owner Status Income Borrower

1
2
3
4
5
6
7
8
9

FEFFEEFEFF

—
o

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Fiqure 4.7, Hunfs algoitm fo nducing decision tees,

Design issues

· How should the training records be split?

· How should the splitting procedure stop?

Splitting methods

· Binary attributes

[image: image12.jpg]/" Body
(Temperature

Warm- Cold-
blooded blooded

Figure 4.8. Test condtion for binary attributes.

Splitting methods

· Nominal attributes

[image: image13.jpg](Warial
(e

single Divorced Married
(@) Multiway split

/Mﬂ@ (o s

(suwe (Saws) (s

(aricdy (S, S~ Sirole. (Oworcod
Divorced) Divorced} Married)

(b) Binary spitt{by grouping attribute values}

Figure 4.9. Test conditions for nominal atiributes.

Splitting methods

· Ordinal attributes

[image: image14.jpg]Shirt Shirt Shirt

Size Size Size
{Small, {Large, {Small) {Medium, Large, (Small, {Medium,
Medium) Extra Large} Extra Large) Large) Extra Large)

(a) (b) (©

Figure 4.10. Different ways of grouping ordinal attribute values.

Splitting methods

· Continuous attributes

[image: image15.jpg]/ Al

Income

{10K, 25K} {25K, 50K} (50K, 80K}
@ ®)

Figure 4.11. Test condition for continuous attributes.

Selecting the best split

· p(i|t): fraction of records belonging to class i
· Best split is selected based on the degree of impurity of the child nodes
– Class distribution (0,1) has high purity

– Class distribution (0.5,0.5) has the smallest purity (highest impurity)

•
Intuition: high purity  small value of impurity measures  better split

Selecting the best split

[image: image16.jpg]Gender

Male Female Family Luxury

C0:6|(CO: 4 Co:1 C0: 1
C1:4]|C1:6 Ci: C1:7

(@) (b)

Selecting the best split:

Impurity measures

· p(i|t): fraction of records associated with node t belonging to class i
	
	c

	Entropy(t) = −
	cX

	
	p(i|t) log p(i|t)

	
	i=1

	Xi

	Gini(t) = 1 −
	[p(i|t)]2

=1

Classification-Error(t) = 1 − max[p(i|t)]

i

Range of impurity measures

[image: image17.jpg]0 01 02 03 04 06 07 08 08 1

Figure 4.13. Comparison among the impurity measures for binary classification problems.

Impurity measures

· In general the different impurity measures are consistent
· Gain of a test condition: compare the impurity

of the parent node with the impurity of the child

	nodes
	k N(vj)
	

	= I(parent) −
	
	
	I(vj)

	
	=1
	N
	

	
	Xj
	

· Maximizing the gain == minimizing the weighted average impurity measure of children nodes

•
If I() = Entropy(), then info is called information gain

Computing gain: example

[image: image18.jpg]Parent
co| 6
ci| 6
Gini = 0,500
O
No Yes, No
Node N1 Node N2| [Node N1 Node N2|
NT[[N2 N1 N2
col4|2 co|1]s
ci|3]3 cia]2
Gini = 0.486 Gini = 0375

Figure 4.14. Spliting binary afributes.

Is minimizing impurity/ maximizing enough?

[image: image19.jpg](et (e (Customer)

D/

Gender (
N

Family Luxury

Male Female

C0:6(|C0:4 Co:1
C1:4||Cl:6 C1:3

(a) (b)
Figure 4.12. Multiway versus binary splits.

Is minimizing impurity/ maximizing enough?

· Impurity measures favor attributes with large number of values

· A test condition with large number of outcomes may not be desirable

– # of records in each partition is too small to make predictions

Gain ratio

• Gain ratio =
info/Splitinfo

· SplitInfo = -Σi=1…kp(vi)log(p(vi))
· k: total number of splits
· If each attribute has the same number of records, SplitInfo = logk
•
Large number of splits  large SplitInfo  small gain ratio

Constructing decision-trees (pseudocode)

GenDecTree(Sample S, Features F)

1. If stopping_condition(S,F) = true then

a. leaf = createNode()
b. leaf.label= Classify(S)
c. return leaf

2. root = createNode()
3. root.test_condition = findBestSplit(S,F)
4. V = {v| v a possible outcome of root.test_condition}
5. for each value vєV:
a. Sv: = {s | root.test_condition(s) = v and s є S};
b. child = TreeGrowth(Sv ,F) ;
c. Add child as a descent of root and label the edge (rootchild) as v
Stopping criteria for tree induction

· Stop expanding a node when all the records belong to the same class

· Stop expanding a node when all the records have similar attribute values

· Early termination

Advantages of decision trees

· Inexpensive to construct

· Extremely fast at classifying unknown records

· Easy to interpret for small-sized trees

· Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5 algorithm

· Simple depth-first construction.

· Uses Information Gain

· Sorts Continuous Attributes at each node.

· Needs entire data to fit in memory.

· Unsuitable for Large Datasets.

· You can download the software from:

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
Practical problems with classification

· Underfitting and overfitting

· Missing values

· Cost of classification

Overfitting and underfitting

[image: image20.jpg]45

40

35

~— Training set
~ - Testset

50

100 150
Number of nodes

200 250

300

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to noise

[image: image21.jpg]35

25

15

05

Noise point

(5

28

Decision boundary is distorted by noise point

Underfitting due to insufficient samples

[image: image22.jpg]35,

25

15)

05

Misclassified
O<+— points

o/\

o

15

35

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

· Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Overfitting: course of action

· Overfitting results lead to decision trees that are more complex than necessary

· Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

· Need new ways for estimating errors

Methods for estimating the error

· Re-substitution errors: error on training (Σ e(t))
· Generalization errors: error on testing (Σ e’(t))
· Methods for estimating generalization errors:

– Optimistic approach: e’(t) = e(t)

– Pessimistic approach:

· For each leaf node: e’(t) = (e(t)+0.5)
· Total errors: e’(T) = e(T) + N × 0.5 (N: number of leaf nodes)

· For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%

Generalization error = (10 + 30×0.5)/1000 = 2.5%

– Reduced error pruning (REP):

· uses validation data set to estimate generalization error

Addressing overfitting:

Occam’s razor

· Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

· For complex models, there is a greater chance that it was fitted accidentally by errors in data

· Therefore, one should include model complexity when evaluating a model

Addressing overfitting:

postprunning

– Grow decision tree to its entirety

– Trim the nodes of the decision tree in a bottom-up fashion

– If generalization error improves after trimming, replace sub-tree by a leaf node.

– Class label of leaf node is determined from majority class of instances in the sub-tree

– Can use MDL for post-pruning

Addressing overfitting:

preprunning

· Stop the algorithm before it becomes a fully-grown tree

· Typical stopping conditions for a node:

· Stop if all instances belong to the same class

· Stop if all the attribute values are the same

· More restrictive conditions:

· Stop if number of instances is less than some user-

specified threshold

· Stop if expanding the current node does not improve impurity

measures (e.g., Gini or information gain).

Decision boundary for decision trees

· Border line between two neighboring regions of different classes is known as decision boundary
· Decision boundary in decision trees is parallel to axes because test condition involves a single attribute at-a-time

Oblique Decision Trees

[image: image23.png]

x + y < 1

	Class = +
	
	Class =

	
	
	

[image: image24.png]

• Test condition may involve multiple attributes

• MoreNotexpressivealldatasetsrepresentationcan be partitioned optimally

• Finding optimal test condition is computationally expensive

using test conditions involving single attributes!

Oblique Decision Trees

[image: image25.jpg]

Circular points:

0.5 ≤ sqrt(x12+x22) ≤ 1

Triangular points:

sqrt(x12+x22) >1 or

sqrt(x12+x22) < 0.5

